

Introduction to Plotting with Matlab

Math Sciences Computing Center

University of Washington

September, 1996

Contents

Fundamentals . 1

Making Plots . 2

Printing and Saving Graphs . 5

Loading Data Files . 5

Title and Labels . 6

Other Interesting Features of Matlab Plotting . 6

Matlab is a program for solving engineering and mathematical problems. The basic Matlab

objects are vectors and matrices, so you must be familiar with these before making extensive use

of this program.

To start Matlab type matlab; to quit, type quit or exit.

Fundamentals

Matlab works with essentially one kind of object, a rectangular numerical matrix. Vectors and

scalars are referred to as n-by-1 and 1-by-1 matrices respectively. Here is some basic information

on using Matlab matrix commands.

� Entering Matrices

The matrix

A =

2
64
1 3 2

2 4 1

6 6 8

3
75

can be entered into Matlab by typing the following three lines. Each line ends by

pressing the Return key.

A = [1 3 2

2 4 1

6 6 8]

1

� Generating Vectors With Even Space

To plot a function, you must �rst specify the data points at which the function will be

evaluated. It is common to choose evenly spaced points and put then in a vector. Here

is how you generate a row vector X containing the values from 0 to 10 in increments of

0.2.

X = 0 : 0.2 : 10

� Array Operations

This term is used to refer to element-by-element arithmetic operations on vectors,

instead of the usual linear algebra operations denoted by the symbols *, /, or^

(exponentiation). Preceding an operator with a period . indicates an array or

element-by-element operation.

For example, if X = [1 2 3] and Y = [4 5 6]; then

X: � Y = [4 10 18].

Notice that the usual vector product X � Y is unde�ned.

The Matlab object ones(m,n) is useful if you want to add or subtract a constant from

each element in a vector. ones(m,n) is an m-by-n matrix of ones. Using the vector X

from the last example, you write the expression X + 2 as follows in Matlab notation.

X + 2 * ones(1,3)

The dimension of ones vector must match the other vectors in the computation. The

command size(A) returns the dimension of a vector or matrix A.

� On-line Help

Matlab has on-line help for all its commands. For example, try any of these commands:

help print

help help

help general

Making Plots

Matlab provides a variety of functions for displaying data as 2-D or 3-D graphics.

For 2-D graphics, the basic command is:

plot(x1, y1, 'line style', x2, y2, 'line style'...)

2

This command plots vector x1 versus vector y1, vector x2 versus vector y2, etc. on the same

graph. Other commands for 2-D graphics are: polar, bar, stairs, loglog, semilogx, and

semilogy.

For 3-D graphics, the most commonly used commands are:

plot3(x1, y1, z1, 'line style', x2, y2, z2, 'line style'...)

contour(x,y,Z)

mesh(x,y,Z), surf(x,y,Z)

The �rst statement is a three-dimensional analogue of plot() and plots lines and points in 3-D.

The second statement produces contour plots of the matrix Z using vectors x and y to control the

scaling on the x- and y- axes. For surface or mesh plots, you use the third statement where x, y

are vectors or matrices and Z is a matrix. Other commands available for 3-D graphics are:

pcolor, image, contour3, �ll3, cylinder, and sphere.

Example 1: Plot y1 = sin(x) and y2 = cos(x) with x in [0; 2�] on the same graph. Use a solid

line for sin(x) and the symbol + for cos(x). The �rst step is to de�ne a set of values for x at

which the functions will be de�ned.

x = 0 : 0.1 : 2*pi;

y1 = sin(x);

y2 = cos(x);

plot(x, y1, '-', x, y2, '+')

Note: Ordinarily Matlab prints the results of each calculation right away. Placing ; at

the end of each line directs Matlab to not print the values of each vector.

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Example 1

Another way to get multiple plots on the same graph is to use the hold command to keep the

current graph, while adding new plots. Another hold command releases the previous one. For

example, the following statements generate the same graph as in Example 1. Matlab remembers

that the vector x is already de�ned.

3

 50

 100

 150

 200

 250

30

210

60

240

90

270

120

300

150

330

180 0

Example 2

plot(x, sin(x), '-')

hold

plot(x, cos(x), '+')

The next example shows how Matlab generates a spiral using the polar coordinate system.

Example 2: Plot � = �2 with 0 � � � 5� in polar coordinates.

theta = 0: 0.2: 5*pi;

rho = theta.^2;

polar(theta, rho, '*')

The following example illustrates how to generate a mesh surface in Matlab.

Example 3: Plot z = sin(r)=r with r =
p
x2 + y2, �8 � x � 8, �8 � y � 8.

The �rst step in displaying a function of two variables, z = f(x; y), is to use the meshgrid

function to generate X and Y matrices consisting of repeated rows and columns, respectively, over

the domain of the function. The function can then be evaluated and graphed.

x = -8: .5: 8; y = x;

[X,Y] = meshgrid(x,y);

R = sqrt(X.^2 + Y.^2) + eps; % add eps to prevent R=0

Z = sin(R)./R;

mesh(x, y, Z) % or mesh(X,Y,Z)

Anything following % on a line is treated as a comment. We added eps (the machine �) to R to

prevent overow.

4

-10
-5

0
5

10

-10

-5

0

5

10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Example 3

Printing and Saving Graphs

There are two ways to print your plots. The �rst one sends a copy of your graph directly to the

default printer in the Thomson Hall lab. The second lets you save your graph in a �le so you can

use Unix printing commands to direct it to the printer of your choice.

� Type print in the Matlab environment to send your current plot to the pre-de�ned printer.

On Math Sciences Matlab, the default printer is a laser printer in Thomson Hall. The print

command generates a full page plot.

� If you want to save graphs in a �le, use another printer, change the plot orientation, or use

other features of the print command, look at the on-line help text within Matlab. For

example, to save your graph in a PostScript �le, use the command:

print -dps name-of-file

Loading Data Files

Matlab reads in values from ASCII �les using the load command. Once the data�le has been read

in, you can use any of the Matlab graphing commands. Here are some of the things you need to

consider when reading in data.

The name of the ASCII data�le must have two parts, separated by a period. The command

load filename.extension

reads the �le �lename.extension, which can be an ASCII �le with a rectangular array of numeric

data, arranged in m lines with n values in each line. The result is an m-by-n matrix with the

same name as the �le with the extension (including the period) stripped.

Here are some examples:

5

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

Y = Sin(X)

Critical point

Example 4

load f.m creates a Matlab variable named f

load y1 loads from a �le named y1.mat

load func -ascii loads from a �le named func

Title and Labels

You can add a title and labels for the axes with the commands; title, xlabel, ylabel and zlabel.

You can also add contour labels to a contour plot by the command clabel. Other text can be

added to the graph by using the text or gtext commands. With text, you specify a location

where left edge of a text string is placed. With gtext, you position the text string with the mouse.

Here is an example which adds titles and labels to the graph of f(x) = sin(x).

Example 4: Plot y = sin(x); 0 � x � 2�, with appropriate labels.

x = 0: 0.1: 2*pi; plot(x,sin(x))

title('Y = Sin(X)')

xlabel('X'); ylabel('Y')

hold

plot(pi,0,'*')

text(pi + 0.1, 0, 'Critical point') % or gtext('Critical point')

hold

Other Interesting Features of Matlab Plotting

Matlab has a lot more capability for graphing or plotting than what has been mentioned here.

What follows is a very brief description of three options (multiple graphs in one window, changing

the viewpoint for 3-D plots, and controlling axes). Matlab also o�ers ways to turn a sequence of

graphs into a movie, control almost every aspect of graphics objects , and create image plots. You

6

should read the Matlab User's Guide (or some other commercial documentation) for more

information.

� Multiple Plots

The command subplot(m,n,p) breaks the graph (or �gure) window into an m-by-n

matrix of small rectangular panes. The value of p is the pane for the next plot. Panes

are numbered from left to right, top to bottom. To return to the default single graph

per window, use either subplot(1,1,1) or clf .

You can have more than one graphics window on an X display. The Matlab command,

�gure opens a new window, numbering each new window. You can then use

commands such as clf, �gure(h), or close to manipulate the �gure windows.

� Viewpoint

You can set the angle of view of a 3-D plot with the command:

view(az,el)

az is the azimuth and el is the elevation of the viewpoint, both in degrees. See the

viewpoint �gure for an illustration of azimuth and elevation relative to the Cartesian

coordiate system.

Z

Y

X
0

Azimuth

Viewpoint

=-37.5

Elevation
=30

Default Viewpoint

Example 5: View the internal Matlab peaks matrix from 4 di�erent viewpoints. The

�rst one, (view(-37.5,30), is the default viewpoint.

subplot(2,2,1); mesh(peaks(20)); view(-37.5,30)

subplot(2,2,2); mesh(peaks(20)); view(-7,80)

subplot(2,2,3); mesh(peaks(20)); view(-90,0)

subplot(2,2,4); mesh(peaks(20)); view(-7,-10)

7

0
10

20

0

10

20
-10

0

10

0 5 10 15 20
0

5

10

15

20
-10

0
10

05101520
-10

-5

0

5

10

0 5 10 15 20

0
10

20
-10

-5

0

5

10

Example 5

� Controlling Axes

You can control the scaling and appearance of plot axis with the axis function. To set

scaling for the x- and y- axes on the current 2-D plot, use this command:

axis([xmin xmax ymin ymax])

To scale the axes on 3-D plot, use this:

axis([xmin xmax ymin ymax zmin zmax])

In addition,

axis('auto') returns the axis scaling to its default where the best

axis limits are computed automatically;

axis('square') makes the current axis box square in size, otherwise

a circle will look like an oval;

axis('o�') turns o� the axes

axis('on') turns on axis labeling and tic marks.

8

